The current release of dplyr (v 0.4.1) offers lot more flexibility regarding usage of important verbs in non-interactive mode. In this post, I'm exploring different possible use-cases.
- group_by_, select_, rename_:
- filter_:
- mutate_, transmute_, summarise_:
- joins:
For 2 table verbs, there's no *_join_ function and we don't need one for general purposes. We can just pass a named vector to by argument. setNames function comes in handy while doing this.
The R Code for the above mentioned use cases is shown below and can also be found on this GitHub Gist.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# using dplyr finctions in non-interactive mode | |
# examples | |
library(plyr) | |
library(dplyr) | |
d1 = data_frame(x = seq(1,20),y = rep(1:10,2),z = rep(1:5,4)) | |
head(d1) | |
#### single table verbs #### | |
# group_by | |
group_by_fn <- function(d_in,gp_vec){ | |
d_out = d_in %>% | |
group_by_(.dots = gp_vec) | |
} | |
gp_vec = c("y","z") | |
d1_gp_by_out = group_by_fn(d1,gp_vec) | |
head(d1_gp_by_out) | |
# select/rename (haven't included drop variables case) | |
select_fn <- function(d_in,sel_vec){ | |
d_out = d_in %>% | |
select_(.dots = sel_vec) | |
} | |
sel_vec = c("x","y") | |
d1_select_out = select_fn(d1,sel_vec) | |
head(d1_select_out) | |
# filter | |
filter_fn <- function(d_in,filter_crit){ | |
d_out = d_in %>% | |
filter_(filter_crit) | |
} | |
y_vec = 6:8 | |
filter_crit = interp(~ filter_var %in% y_vec,filter_var = as.name("y")) | |
d1_filter_out = filter_fn(d1,filter_crit) | |
head(d1_filter_out) | |
z_vec = 1:2 | |
filter_crit2 = interp(~ filter_var1 %in% y_vec & filter_var2 %in% z_vec,.values = list(filter_var1 = as.name("y"), | |
filter_var2 = as.name("z"))) | |
d1_filter2_out = filter_fn(d1,filter_crit2) | |
head(d1_filter2_out) | |
# mutate, transmute, summarise | |
mutate_fn <- function(d_in,op_ls,var_vec){ | |
d_out = d_in %>% | |
mutate_(.dots = setNames(op_ls,var_vec)) | |
} | |
var1_rng = 3:5 | |
op_ls = list(interp(~f(var1,var2), .values = list(f = as.name("*"), | |
var1 = as.name("x"), | |
var2 = as.name("y"))), | |
interp(~f(var1 %in% var1_rng,var2,var3),.values= list(f = as.name("ifelse"), | |
var1 = as.name("x"), | |
var2 = as.name("y"), | |
var3 = as.name("z")))) | |
var_vec = c("yy","zz") | |
d1_mutate_out = mutate_fn(d1, op_ls, var_vec) | |
head(d1_mutate_out) | |
var_ls = list("yy","zz") | |
d1_mutate_out1 = mutate_fn(d1, op_ls, var_ls) | |
head(d1_mutate_out1) | |
#### two table verbs #### | |
# joins | |
d2 = data_frame(xx = seq(1,20),yy = rep(1:10,2),zz = rep(1:2,10)) | |
join_fn <-function(d_in1,d_in2,var_vec1,var_vec2){ | |
d_out = d_in1 %>% | |
left_join(d_in2,setNames(var_vec2,var_vec1)) | |
} | |
var_vec1 = c("x","y") | |
var_vec2 = c("xx","yy") | |
d_join_out = join_fn(d1,d2,var_vec1,var_vec2) | |
head(d_join_out) | |
# everything combined (essentially, power of %>%) | |
d_combined_out = d1 %>% | |
filter_fn(filter_crit) %>% | |
group_by_fn(gp_vec) %>% | |
mutate_fn(op_ls,var_vec) %>% | |
select_fn(c("x","y","z")) %>% | |
join_fn(.,d2,var_vec1,var_vec2) | |
head(d_combined_out) | |
# sources: | |
# http://cran.r-project.org/web/packages/dplyr/vignettes/nse.html | |
# http://stackoverflow.com/questions/28125816/r-standard-evalation-for-join-dplyr |
This was enormously helpful. Thanks!!
ReplyDelete